A short proof of generalized Jacobi-Trudi expansions for Macdonald polynomials

نویسنده

  • Michel Lassalle
چکیده

We give an elementary proof of the development of Macdonald polynomials in terms of “modified complete” and elementary symmetric functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The coefficients of differentiated expansions of double and triple Jacobi polynomials

Formulae expressing explicitly the coefficients of an expansion of double Jacobi polynomials which has been partially differentiated an arbitrary number of times with respect to its variables in terms of the coefficients of the original expansion are stated and proved. Extension to expansion of triple Jacobi polynomials is given. The results for the special cases of double and triple ultraspher...

متن کامل

Two parameters circular ensembles and Jacobi-Trudi type formulas for Jack functions of rectangular shapes

Jack function theory is useful for the calculation of the moment of the characteristic polynomials in Dyson’s circular β-ensembles (CβE). We define a q-analogue of the CβE and calculate moments of characteristic polynomials via Macdonald function theory. By this q-deformation, the asymptotics calculation of these moments becomes simple and the ordinary CβE case is recovered as q → 1. Further, b...

متن کامل

The Smith normal form of a specialized Jacobi-Trudi matrix

Let JTλ be the Jacobi-Trudi matrix corresponding to the partition λ, so det JTλ is the Schur function sλ in the variables x1, x2, . . . . Set x1 = · · · = xn = 1 and all other xi = 0. Then the entries of JTλ become polynomials in n of the form ( n+j−1 j ) . We determine the Smith normal form over the ring Q[n] of this specialization of JTλ . The proof carries over to the specialization xi = q i...

متن کامل

Comparative study on solving fractional differential equations via shifted Jacobi collocation method

In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equ...

متن کامل

Flagged Schur Functions, Schubert Polynomials, and Symmetrizing Operators

Flagged Schur functions are generalizations of Schur functions. They appear in the work of Lascoux and Schutzenberger [2] in their study of Schubert polynomials. Gessel [ 1 ] has shown that flagged Schur functions can be expressed both as a determinant in the complete homogeneous symmetric functions and in terms of column-strict tableaux just as can ordinary Schur functions (Jacobi-Trudi identi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004